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Vorticity formulations for the incompressible Navier—Stokes equations have cer-
tain advantages over primitive-variable formulations including the fact that the num-
ber of equations to be solved is reduced. However, the accurate implementation of
the boundary conditions seems to continue to be an impediment to the acceptance
and use of numerical methods based on vorticity formulations. Velocity boundary
conditions can be implicitly satisfied by maintaining the kinematic compatibility of
the velocity and vorticity fields as described by the generalized Helmholtz decom-
position (GHD). This can be accomplished in one of two ways by either solving
for boundary vorticity (leading to a Dirichlet boundary condition for the vorticity
equation) or solving for boundary vortex sheet strengths (leading to a Neumann
condition). In the past, vortex sheet strengths have often been determined by solv-
ing an over-specified set of linear equations. The over-specification arose because
integral constraints were imposed on the vortex sheet strengths. These integral con-
straints are not necessary and typically are included to mitigate errors in determining
the vortex sheet strengths themselves. Further, the constraints overspecify the linear
system requiring least-squares solution techniques. To more accurately satisfy both
components of the velocity boundary conditions, a Galerkin formulation is applied
to the generalized Helmholtz decomposition. This formulation implicitly satisfies
an integral constraint that is more general than many of the integral constraints that
have been explicitly imposed. Two implementations of the Galerkin GHD are con-
sidered in the current work, one based on determining the boundary vorticity and one
based on determining the boundary vortex sheet strengths. A finite element method
(FEM) is implemented to solve the vorticity equation along with the boundary data
generated from the GHD. @ 2001 Academic Press
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1. INTRODUCTION

Vorticity formulations of the incompressible Navier—Stokes equations have distinct &
vantages over velocity-pressure formulations. Some of these advantages include a redu
in the number of equations to be solved through the elimination of the pressure varial
identical satisfaction of the compressibility constraint and the continuity equation, an i
plicitly higher-order approximation of the velocity components, and, for exterior flow prol
lems, a reduced computational domain. These advantages remain largely untapped
ever, since gquestions concerning how to determine appropriate boundary conditions
vorticity formulations have not been fully resolved [21]. The problem is that the bounda
conditions for the Navier—Stokes equations are typically given in terms of velocities, t
boundary conditions in terms of vorticity are required for vorticity formulations. Thus,
is necessary to deduce vorticity boundary conditions not only from the velocity boundz
conditions but also from the vorticity field in the domain. Vorticity boundary condition:
can be given in terms of either prescribed vorticity or prescribed normal gradient (flux)
vorticity. The Navier—Stokes equations indicate that vorticity is created at the boundary
a way that satisfies the velocity boundary conditions [2]. However, neither the bound:
vorticity nor its flux is generally knowa priori, and hence, additional kinematic and, in the
case of vorticity flux, dynamic equations must be introduced to relate boundary conditic
to vorticity creation.

Many schemes to determine vorticity boundary conditions have been proposed c
prising a wide range of different approaches. Approaches relying on kinematics inclt
streamfunction-vorticity methods [1, 13, 22, 24-26], velocity—vorticity Cauchy methoc
[7], vorticity—velocity Poisson equation methods [5], Biot—Savart methods [4], and gen:
alized Helmholtz decomposition (GHD) methods [18, 19, 28-32]. Other approaches
based on dynamics (Navier—Stokes equations) on the boundary [12, 33]. Several revi
have been written on this subject including those of Gresho [9], Puckett [23], Leonard [
15], and Sarpkaya [27].

Despite this large body of research, several questions concerning vorticity creation ren
either unresolved or obscure. These questions include the following:

e Isthere a unique specification of boundary vorticity or flux to satisfy velocity bounda
conditions in each coordinate direction?

e Are integral constraints necessary when using the GHD to resolve vorticity created
the boundary, and how can these constraints be implemented in a numerical algorithm

e Should both normal and tangential components of the velocity boundary conditic
be imposed or is it sufficient to impose only one component? If only one, which one?

e Are kinematics sufficient to specify vorticity flux creation or must dynamic informatiol
be used?

e Is the value of vorticity on the boundary (Dirichlet condition) or its normal derivative
(Neumann condition) the appropriate boundary condition?

This paper discusses an approach which resolves many of these questions rega
vorticity boundary conditions.

Many of the above questions are interrelated. For example, the questions dealing witf
unique specification of vorticity and imposition of integral constraints are related in that t
integral constraint overspecifies the system of equations generated from the GHD. He
the solution may no longer be unigue. Many investigators indicate that an overspecifiec
of equations must be solved to determine vorticity generation on the boundary includ
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an integral constraint, although the precise mathematical justification for such constra
is not clear. For example, Wu [32] indicates that the linear system of equations basec
a Helmholtz decomposition is rank deficient. For closure, Wu specifies that the volu
integral of the vorticity field must be zero. Ve al.[33] claim that a constraint is needed to
exclude spurious solutions that arise because of the fact that the vorticity equation cont
higher order derivatives of velocity. Sarpkaya [27] uses a constraint based on the requirer
that the pressure be single-valued on the boundary. Koumoutstkb$13] also indicate
that an integral constraint is needed to obtain a unique solution; they use a constraint b
on Kelvin's theorem. Quartapelle and Valz-Gris [25] indicate that in order to satisfy bo
normal and tangential velocity boundary conditions for streamfunction-vorticity methoc
vorticity created on the boundary must satisfyamhhocintegral constraint.

The implementation of any integral constraint in addition to the GHD requires solvir
an overspecified system of linear equations. Further, at each point on the boundary,
components of vorticity or vorticity flux are unknown. Over-specification can also occ
by attempting to determine the unknown vorticity components using velocity bounde
conditions in all coordinate directions.

In this paper, an attempt is made to resolve many of the questions raised above. Vort
creation either in terms of vortex sheet strengths or boundary vorticity can be accura
specified from purely kinematic considerations without the imposition of any integral cc
straints. However, in the case of vortex sheet strengths, dynamic considerations are req
to relate the vortex sheet strengths to the vorticity flux at the boundary. Even though at €
point along the boundary there are more components of specified velocity than unkn
components of either the vortex sheet strengths or boundary vorticity, a unique specifice
of the vorticity flux or boundary vorticity exists that satisfies all components of the veloci
boundary conditions.

Two approaches for determining vorticity boundary conditions are considered in tl
paper. Both are based on a Galerkin implementation of the generalized Helmholtz dec
position (GHD). In the first approach, the GHD is augmented to include the possibility
vortex sheets along the boundary. The vortex sheets are then related to the vorticity
yielding Neumann boundary conditions for the vorticity equation. In the second approa
boundary vorticity is calculated directly from the GHD yielding Dirichlet boundary condi
tions. In both cases, itis shown that the normal component of the GHD yields a rank-defic
discretized system of equations, whereas the tangential component implicitly satisfie
integral constraint. The Galerkin implementation of the GHD is shown to satisfy the veloc
boundary conditions far better than the more common point-collocation methods.

The ultimate purpose of resolving the issues of accurate specification of the vortic
boundary conditions is to implement a method for determining these boundary conditi
into a numerical algorithm based on the vorticity form of the Navier—Stokes equations
Galerkin finite element method is presented for solving the vorticity equation. The accur
of the formulation is demonstrated by considering the driven-lid cavity problem.

2. MATHEMATICAL FORMULATION

The vorticity form of the Navier—Stokes equations for an incompressible flow in tw
dimensions is given by

-

9 . .
aito +(@- Vo = vV, @
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where i is the velocity field,o = V x i is the vorticity field,t is time, andv is the
constant kinematic fluid viscosity. In the course of solving Eqg. (1), the velocity figld,
must be determined from the vorticity field, and the creation of vorticity on the bound-
ary must be determined from the velocity boundary conditions. In the present formulati
determining both the interior velocity field and the creation of vorticity on the boundary a
accomplished in a unified manner using the generalized Helmholtz decomposition (GH
The GHD can be viewed as the infinite domain solution to the vector Poisson equati

Vii=-Vxa&+VD, 2)

obtained by performing the curl operation on the equation defining vorticity and identifyir
D = V - i. Inthe present work) = 0 since only incompressible flows are considered. Th
GHD has been derived independently by several investigators including Wu and Thomp
[29], Morino [18] (based on work by Bykhovskiy and Smirnov [3]), Uhiman and Grant [28
(based on work by Morse and Feshback [20]), and Meir and Schmidt [17]. It is interesti
to note that none of these investigators reference one another except Morino who bri
notes some of Wu'’s work. A complete derivation of the GHD can be found in Keretida
[11].
The GHD for an incompressible fluid in two dimensions is given by

oo [0 XTEY) o [GE) x AN x T &9 .
“(X)U(X)—/Wdﬂ()’)-l- A 2&.3) dr(y)
[Gy) - APIF X,y -
- —_— dr(y), 3
r r2(X, y) ) (3)

wherei is the unit normal vector on the boundary (pointing away from the fluiz),
represents the two-dimensional domain, &nid the boundary of2. The coefficient is a
function of the location of the field point. For field points outside of the domaim,= 0;

for field points in the interior of the domain, = 27; for field points on smooth portions
of the boundaryx = 7. At edges or cornergy can be related to a local internal angle.
However, in the following development, a method is developed which circumvents havi
to evaluatex explicitly.

The GHD is valid only for certain kinematically admissible interior vorticity fiel@ds,
and velocity boundary conditions. For example, assume Eq. (3) is satisfied at a given t
7, and consider an explicit time integration of the vorticity equation (Eq. (1)). After th
vorticity field has been transported but without properly taking into account the producti
and transport of vorticity at the boundary, Eq. (3) is no longer generally satisfied. The
are essentially two ways that kinematic compatibility can be reestablished by satisfying
GHD.

Perhaps the most direct approach is to use the GHD to calculate updated values o
boundary vorticity [10, 30]. This leads to Dirichlet conditions for the vorticity equation. Fc
two-dimensional problems, there are two components of the GHD but only one compor
of unknown vorticity. Wu [32] states that the normal and tangential component of the GF
are equivalent and either can be used to determine the boundary vorticity. In the followi
it will be shown that, for Galerkin implementations, the normal component of the GH
leads to rank deficiency of the discretized linear system of equations. Despite the fact
the GHD represents a Fredholm equation of the first kind for the vorticity, the singul
nature of the kernel function leads to a generally well-conditioned linear equation set.
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A more subtle use of the GHD to reestablish kinematic compatibility is to represent
circulation associated with the newly created vorticity by a vortex sheet as proposec
Lighthill [16]. There is a jump in tangential velocity across the vortex sheet equal to t
strength of the sheet. On the fluid side of the sheet, the tangential velocity is determi
from the vorticity within the domain and the velocity boundary conditions, while on th
nonfluid side, the velocity is specified by the boundary conditions. Conveniently enou
the boundary integrals in Eq. (3) represent the motion induced by vortex sheets and sc
sheets with strengths ando, respectively, given by

y =Ax (U —0U) and o =h- (lns — U), (4)

where, in the case of a stationary boundary, the nonfluid veldigity= 0 by definition.
That is, the boundary integrals represent jumps in normal and tangential velocity on
boundary.

Circulation created on the boundary can be included by rewriting Eq. (3) to include t
vortex sheet of strength as shown below

e e o(y) x T(X,¥) .
— = —— S aQ
a(X)[U(X) =y (X) x N(X)] /Q 2x.9) y)
/ [(@Y) — 7)) x BY) x AY] x (X, )
+ —
r r=(x,y)
_/ [G(y) - AT (X, )
r r2(X, y)

dr'(y)

dI'(¥). ®)

By adding a vortex sheet along the boundary which accounts for the production of vortic
the velocity boundary conditions can be satisfied after an explicit time step of the vortic
equation by exactly cancelling the induced slip velocity.

The solution of Eq. (5) yields the vortex sheet strengthsepresenting the creation of
vorticity during a given time step. Although the determination of the vortex sheet streng
can be determined from purely kinematical considerations, the relationship between
vortex sheet strength and the flux of vorticity from the boundary into the domain deper
on dynamics.

The definition of the vortex shegtis given by

J_) = Iimwﬁoo,dnéoa)r dn. (6)

The subscript in o, indicates that the vorticity on the boundary must be in the tangenti
direction. In discreet form

Aw, =y /An, @

where An represents the distance over which the vorticity will diffuse in a time interve
At. Integrating the vorticity equation over a small voluvie= AAn and fromt tot + At

yields
t+45t D" t-+5t
Yt 4V dt= VW25, dV dt @)
t v Dt t v
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At solid boundaries where vorticity is produced, the flow is parallel in the limitas— 0,
and therefore, the convective flux of vorticity can be neglected in Eq. (8). Hence, using
divergence theorem

t+65t nd t+65t -
/ / iy dtz/ /ua‘“’ dAdt (9)
t Y, ot t A an

This equation can be written in discrete form using a first-order approximation for the tir
derivative as

-

w

AdV = v—AAL. (10)

an

Hence, using Eg. (7), the following expression is obtained:

-

dor ¥
an VAt

(11

Thatis, the vortex sheet strength can be related to the normal flux of vorticity on the bounc
which can now be used as a Neumann boundary condition for the vorticity equation.

3. NUMERICAL IMPLEMENTATION

A Galerkin implementation of the GHD for determining either boundary vorticity o
vortex sheet strengths is first presented in this section followed by some implementa
issues associated with the GHD. Next, a Galerkin finite element method (FEM) for solvi
the vorticity form of the Navier—Stokes equations is presented. Finally, an outline of t
numerical algorithm for solving the vorticity equation is presented.

3.1. Galerkin Approximation of the GHD

One reason that may have been the cause of previous researchers imposing cons
equations on the GHD, such as Stokes theorem, is that the GHD itself was poorly appr
mated. Excess vorticity created at each time step can accumulate in the interior of the
domain causing a degradation of the solution over time. As shown in Section 3.3, a Galel
approximation of the GHD provides far more accurate results compared to the more pop
point collocation methods.

A uniform approach can be taken to the discretization of either form of the GHI
that is, with or without vortex sheet strengths (Egs. (3) and (5)).uLegpresent either
U or i — y x i depending on whether the Neumann (vortex sheet solution) or Dirichl
(boundary vorticity solution) formulation is desired. In either case, the GHD can be writti
as

dr'(y)

cmo [ O XTEY) o [V(¥) x AP)] x F'(X, ¥)
@i = [ G wm+ | SRR
) - AGFE. P
r r2(x, y)

dr(y). (12)
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The domain< is discretized into finite elements and the boundary of the domam
discretized into boundary elements. Within #ib finite element, thgth component o
is approximated as

4
of (V) =) of S, (13)
1=1

wherewf; represents the value of th¢h component ofy at thelth node within theeth
finite element, and represents the biliniear Lagrangian shape function associated w
the finite element. Similarly, within theth boundary element, thggth component of is
approximated as

2
Vi) =D vE NI, (14)
=1

where, in this casey] represents the value of theh component ofb at thelth node
within the eth boundary element, arld, represents the linear Lagrangian shape functiol
associated with the boundary element. It is certainly possible to expand the boundary
finite element libraries without much difficulty but as seen in the results the linear bound
elements and bilinear finite elements provide excellent results.

Substituting Egs. (13) and (14) into Eq. (12), the discretized form of the GHD can
written using indicial notation as

NFE
%) vi (X d @mpemikvE N (Y)nd
a(X)vi(X)=Z/ a;kwgsd(y)deJrZ/ mp Jkdljdl Yy
v rr

RBE vi N ;i

_Z/r ad O as)

whereg i is the unit alternating tensddFE represents the number of finite elemeNBE
represents the number of boundary elements, dand x; — y;, whereX = (x1, x2) and

y= (Y1 ¥2).
Using the properties of the unit alternating tensor, this equation can be rewritten as

NFE

ajko Sdk
Ry (%) = Z/ A 3% o
Q r
NBE
v|k N, dcn; — v“ N, dcng — v|k N, d; nk
dr. 16
+Z/ d.d (16)

It is possible at this point to multiply the above equation by the nodal basis functio
associated with the boundary element shape functigrend perform a second integral
over the boundary in order to determine a Galerkin approximation of the GHD. Howevel
a single integral would result on the right-hand side of the equation, whereas a dol
integral would result on the left-hand side of the equation. This is cumbersome, from b
a programming and a bookkeeping point of view.
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FIG. 1. Deformation of the domaim® to exclude the field poink = (x3, x;). The deformed domain has
boundant” — I'* + I,.

The termux (X)vj (X) can be incorporated directly into the boundary integral by considerin
rigid body arguments [6]. That is, ifi is constant, then the associated vorticity field is
identically zero. Hence,

. dknk dong — diny
= — dr — -~ dr 17
wOOvr = g O “2/r o (7

. dkny dony — diny
= — dr — ————~dr. 18
@002 == | g, ”1/r a4 (18)

Consider the terms
dony —d
/Mdr‘:/§-ﬁdf‘, (19)
Jr d; dy r

where by definitiors = (dy/d, d;, —d;/d; dr). The domain2 and boundany”" can be de-
formed to exclude the field poitas shown in Fig. 1. As seen in the figure, the boundan
of the deformed domai®? is given byl" — I'* + T'.. (Note, a similar keyhole cutout of
the domain can be performed for field poitén the interior of the domain.) The reason
for deforming the domain is so that the integrand in Eq. (19) is continuously differentiak
on QY+ T —I'* + T, allowing the application of the divergence theorem. Within the
deformed domain, the divergence theorem requires

/ de/ Mdr:/ v.8de =0 (20)
rre Oed r. dd o

sinceV - S =0.
As shown in Fig. 1 o', d2/+/d;d; = —siné, d;/+/d,d: = — cosh, n; = — cosh, and
n, = —sind. Hence,

dony — diny / sind cosh — cosh sind
—————-dI' = dIr =0. 21
/1“e dr dr e v drdr ( )

In the limitase — 0,I" — I'* — TI', and hence

dznl — d1n2
—————==dIrr=0. 22
ST 2
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Therefore, inserting Eq. (22) into either Eq. (17) or Eq. (18) yields

dk i

aX) = —
r 0 dr

dr. (23)

Using Egs. (22) and (23), Eqg. (16) can be rewritten as

NFE

0= 2:/ %wgzwmﬂm
NBE > o R _ e N (Y
i Z/ U|k N (Y) — v (X)} (on; glrzl:) [Un N (Y) — v (X)]dknk dr.
(24)

This formulation in Eq. (24) has several advantages over Eq. (16). First, the left-hand ¢
of Eg. (16) has been incorporated into the right-hand side so that only double integrals
appear in the Galerkin implementation. Second, the coeffici€xit does not need to be
explicitly evaluated. Finally, the Cauchy principle value integral appearing in Eq. (16) h
been regularized.

Now to obtain a Galerkin approximation, Eq. (24) is multiplied by the shape functiol
Nm(X) and integrated over the the bounddryAssuming thaiN,(x) has support within
the fth boundary element and within that element

W) [y = N (X),

the discretized Galerkin approximation for the GHD is given by

NFE ol Syd
0= Z/ o) [ SO 4
+NZBE / NG [ LENO) 'c\jh;xﬂ(dknl_dlnk)
NBE e Y,
S / N ) [vn NI () o NGO Jdeni (25)
e=1 /T Fe o

3.2. Implementation Issues for the Solution of the GHD

There is some bookkeeping associated with the implementation of Eq. (25) for solv
either the boundary vorticity or the vortex sheet strengths. In the case of solving for
boundary vorticity, the interior nodal values of vorticity get assembled as part of the lo
vector, whereas the boundary nodal values of vorticity represent the unknown vector. In
case of solving for the vortex sheet strengths, the vactamprises both known values of
U and unknown values df.

Beyond the improvement in satisfying the velocity boundary conditions afforded |
the Galerkin implementation of the GHD as shown in the following section, there is
conceptual advantage as well. As discussed in Section 2, the discretized normal
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tangential components of the GHD represeht 2quations inN unknowns, whereN
is the number of degrees of freedom used to represent the boundary vorticity or vol
sheet strengths in discrete form. There have been questions in the past concerning w
component of the GHD (if either) is more appropriate for solving for the unknown sour
densities.

First, consider the formulation to determine Neumann conditions by solving for the vort
sheet strengths in the GHD. Starting from Eq. (16), a discretized form of the Galerkin Gt
can be written as

/ N () (X)y ()N dI(X)
¢

NFE g
8jkwy; Sk . .
_Z/ Nin (X) ’d':j dQ(y) dr' (%)
Qg rr
NBE vﬁ( N dkni — vﬁ N dknk — vﬁ< N di Nk N N
+Z N0 [ T4 dr(y dre). (26)
T r

SinceN1(x) + Na(x) = 1 for any element, the column surmo{. sunm of the discretized
equations to solve for the unknown vortex sheet strengths using either the tangentic
normal component of the GHD is given by

col. sum= / aX) p X)NSR)G (X (X)
Is

//pk(Y)NS(y)QI(X)(dkni(y)_dink(y))
drdr

/ / PPN dr' () dr(). 27)
Ts d; d;

dI" (%) dI'(y)

wherep? represents thigh component of the vect@y = (—ny, n;) within theeth element,
NS(y) is the nodal basis function composed Nf(y) from the element on the left and
N1(¥) from the element on the righEs is the support of the nodal basis function, and the
vectord = (s, 02) represents eithdt or t depending on whether the normal or tangential
component of the GHD is desired. That is, taking a column sum of the discretized equati
is essentially equivalent to choosing two adjaderis in the inner integration in Eq. (26) and
integrating over the entire boundary in the outer integral (although the order of integrat
is interchanged in Eq. (27)).

Since it has been shown that

don1(X) — dina(X) -

dI'x) =0

/1“ a4 0
and

ANk (X)
r dd

dre) = a(y),
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choosingg = i yields
col. sum=2 [ aGIN*G)P G G dr§) =0 (28)
sincep is perpendicular té. On the other hand, choosig= t yields

col.sum= 2 /r « (DN H(P2HM) — prHINF] AL &)

=2 [ a(y)N*@ AT ). (29)

I's

These results can also be interpreted physically. The column sum can be related tc
integral over the boundary of the component of velocity correspondirdgitaluced by
a vortex sheet withil's. For the normal component of velocity, this integral over the
boundary can be related to the integral over the domain of the divergence of the indu
velocity by the divergence theorem. However, the integral of the divergence of the indu
velocity over the domain must be zero since the flow field is incompressible. Similarly, 1
the tangential component of the velocity, the integral of the tangential velocityloier
related to the induced vorticity over the domain by Stokes theorem which is nonzero.

Next, consider the formulation to determine Dirichlet boundary conditions by solving f
the boundary vorticity in the the GHD. Again, sinbk(x) + Nx(x) = 1 for any element,
the column sum of the discretized equations to solve for the unknown boundary vortic
using either component of the GHD is given by

col.sum:/ /Ss(y)(dlqzéxé_dqu(x))dr(?()dgz(y), (30)
s J I rYr

whereQs is the support of the nodal basis functigh This nodal basis function is typically
the union of two of the bilinear shape functions from adjacent finite elements except
in corners of the domain. Choosigig= i, the column sum is again seen to be zero fron
Eqg. (22). Choosing| = t and using Eq. (23), the column sum is given by

col. sum:/ a(Y)S’(¥) dQ(¥). (31)
Q

This analysis shows that, for either formulation (i.e., determining boundary vortici
or vortex sheet strengths), the normal component of the GHD yields rank-deficient lin
systems. In either case, the accuracy of the numerical quadratures can be evaluated
the integrals in Egs. (29) and (31) are easy to evaluate analytically and can be comp
to the column sums resulting from the discretized GHD. However, there is an import:
difference between Egs. (29) and (31). Inthe case of Eq.§29),= = almost everywhere
since the outer integral in Eq. (27) is over a portion of the boundary. On the other hanc
the case of Eq. (31} (y) = 27 almost everywhere since the outer integral in Eq. (27) i
over a portion of the domain. Actual column sums are performed in Section 4 to show
accuracy of the numerical integrations in the current implementation.
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FIG. 2. Induced normal and tangential velocity for the unit vorticity in unit square problem.

3.3. Accuracy Assessment of the Galerkin GHD

A simple benchmark problem is considered to show the improvement in the nume
cal results for the vortex sheet strengths using the Galerkin implementation of the Gl
compared to the results using the more traditional point-collocation implementatic
The benchmark problem consists of a uniform field of unit vorticity in the unit squar
The normal and tangential velocity components on one side of the unit square induce
the unit vorticity is shown in Fig. 2. The objective of this benchmark problem is to sol
for the vortex sheet strengths on the boundary that cancel out the induced componen
velocity to essentially yield no-slip boundary conditions. Recall that, analytically, if th
tangential component of the velocity boundary condition is satisfied by the GHD, th
the normal component must also be satisfied. In discrete systems, however, the tange
component of velocity is not identically satisfied exactly, and hence, neither is the norr
component. Nevertheless, errors in both components are shown to decrease with incre;
grid resolution.

The vortex sheet strengths as calculated by the Galerkin and point-collocation implerr
tations of the GHD are shown in Fig. 3. As seen in the figure, the Galerkin results using
and 100 elements per side are visually indistinguishable. The results generated using
point-collocation method are seen to to oscillate about the Galerkin results.

Possibly more important than the accuracy of the vortex sheet solution is how well the
slip boundary conditions are satisfied by the calculated vortex sheet strengths. The abs
value of the tangential component of velocity computed along one half of the side of the
square is shown in Fig. 4. The velocity calculations are performed in postprocessing us
the calculated values of the vortex sheet strengths shown in Fig. 3. As seen in the figure
Galerkin implementation of the GHD yields errors that are over two orders of magnitu
smaller than the point-collocation implementation for the same discretization. In fact, 1
errors using a Galerkin implementation and 20 linear elements per side yields far be
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FIG. 3. \ortex sheet strengths calculated for the uniform vorticity in unit square problem.

solutions than the point-collocation formulation using 100 linear elements per side. Sim
results are shown for the normal component of velocity in Fig. 5. Again, the bounde
condition in the normal direction is satisfied far better using the Galerkin method compa
to the point-collocation method. It is interesting to note that the magnitude of error for t
normal component of velocity is almost the same as for the tangential component e
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FIG. 4. Absolute value of the tangential component of velocity along one half side of the unit square. Nc
zero is the prescribed value.
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though the actual condition imposed numerically was for the tangential component. In fe
for the Galerkin implementation using 100 elements per side, it appears that the nor
velocity condition is satisfied slightly better than the tangential component.

3.4. Galerkin FEM Solution of the Vorticity Equation

The Galerkin finite element method used to solve the vorticity equation is outlined in tf
section. Multiplying the 2-D vorticity equation in Eq. (1) by a weighting functiopnand
integrating over the domain yields

/ a‘“dsz+/ uwo? +uw?| de / o 2] 4
w— w— w— - Vw——s +vw——= =0,
o ot ol x| YT ay o ax2 y?2

whereuy anduy are the components of the velocity vectbintegrating the second-order
terms by parts (applying Green’s theorem), the weak form of the vorticity equation is writt

as
/ awdQJr/ u aw+u 9 dQ
w—- w— w—-
o ot o\ oax YT ay
Jw Jw Jw Jw
— Yt —— ) dQ = dr 33
+/Q”<axax+ayay) /ran" | (33)

wherel', is the portion of the boundary where Neumann conditions are prescribed and
flux g, is defined by

th=v(A- V)o. (34)
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For Neumann problems$;, = I' and using Eq. (11), the vorticity flux is given in terms
of the vortex sheet strengths as

_r
th= ;- (35)

For Dirichlet problems, the boundary vorticity is calculated directed from the GHD assumi
all vortex sheet strengths are zero.

The weak form of the vorticity equation is discretized by subdividing the doairio
finite elements and subdividing the boundBiinto boundary elements. Using isoparametric
bilinear Lagrangian interpolation for the finite elements and linear interpolation for tl
boundary elements, the weak form of the vorticity equation can be written in discrete fo
as

NBE
Z / i At dFVk
NFE nfe
0§ 0S5, 0§95 o
_ 9299, 9399 4o ) o
=2 /SS‘ Z( /Qeaxax+ayayd>“’l
nfe
S S
+ ; (wie o, Sa_xung( + Sa—yusk3<> deje, (36)

wherenfeis the number of finite elementsbeis the number of boundary elements,
wf, ug;, uj; represent the value af, o, ux, anduy, respectively, at theth node within the
eth finite element;S represents the bilinear finite element shape functjghrepresents
the value ofy at theith node within thesth boundary element; ard; represents the linear
boundary element shape function.

For convenience, the element capacitance matrices, element stiffness matrices, ant
ment load vectors are defined by

(C%j = /Q SSyde (37)
ey _ IS 9S

(KS),, = U/Q S dg (38)
o IS 9S

(KSyj = v/Qe Py oy 4@ (39)

(K = Zuxk XJ'Sfdfz (40)

/ s sdn (a1)

D‘ ?\-sz—
""'_\rll\ =

—~
T
9]
=
I

yke/ NieNjedF. (42)
e
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The discretized weak form can now be written in the following convenient form

nfe nfe nbe
Zwie(ce)ijdfj3 +Zwie{(Kf)ij + (K;?)ij + (KL?)ij + (Ks)ij jof = Zwie(Fe)i'
e=1 e=1 e=1

(43)

After assembly and dividing through by the Galerkin vecter, the assembled finite
element equations become

[Kx + Ky + Ky + Ky [{o} + [Cl{o} = {F}. (44)

The discretized equation set (Eq. (44)) is inherently nonlinear since the maltices
andK, contain the unknown velocity field components. In the current implementation, tl
velocity components ik, andK, are evaluated using Eqg. (3) for the Dirichlet problem
or Eq. (5) for the Neumann problem. Time is discretized using an Euler explicit integra
which is first-order accurate in time.

3.5. Outline of the Numerical Algorithm

The numerical algorithm for solving the vorticity form of the Navier—Stokes equatior
is briefly outlined in this subsection. First, the vortex sheet strengths or boundary vortic
is calculated using the tangential component of the Galerkin form of the GHD (Eqg. (2!
to determine either Neumann or Dirichlet boundary conditions for the vorticity equatic
Next, the internal velocities at the finite element interior nodes are evaluated using
regular form of the GHD, either Eq. (3) or (5). Finally, to complete the time step, tt
vorticity field is transported by solving the explicit form of the finite element equation:
After the explicit convection of vorticity, the flow field is again kinematically incompatible
without incorporating newly formed vorticity or vortex sheet strengths at the boundal
This kinematic incompatibility is resolved by going back to the first step.

In the current implementation of the numerical algorithm, both the discretized FE
equations and discretized GHD equations are solved using an LU solver. The decompos
is done outside the time loop. Further, all integrals for evaluating the interior velociti
are also performed outside the time loop. Hence, within the time loop, the majority
calculation is matrix—vector multiplication and backward substitution.

4. NUMERICAL EXAMPLE

The impulsively started driven square cavity problem at a Reynolds number of 4
is considered to demonstrate the reliability and accuracy of the overall algorithm. T
example is difficult numerically because of the discontinuous boundary conditions whi
the top lid meets the sidewalls and because of the discontinuity between initial and bounc
conditions. For a unit cavity, steady state is achieved in approximately 40 seconds.
current results are generated using a constant time step of 0.001, 1600 finite elements
160 boundary elements (4% 41 uniform grid) unless specified otherwise. The measure
CPU time for all calculations performed outside of the time loop was 93.4 seconds. T
CPU time per time step within the loop was 2.9 seconds showing the efficiency of t
current approach for running through the transient.
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Y

FIG. 6. Streamline pattern for flow in driven cavify = 400.

The streamline pattern and vorticity field generated using the current formulation w
Neumann boundary conditions, (that is, solving for the vortex sheet strengths), are sh
in Figs. 6 and 7. The velocity and vorticity fields are essentially the same at steady s
for both the Dirichlet and Neumann vorticity formulations since, at steady state, the Gl
should be satisfied after an explicit step in the vorticity equation without any vortex she
The results shown in Figs. 6 and 7 qualitatively look the same as the results gener
by Ghia, Ghia, and Shen [8], who used a multigrid finite difference method (FDM) on
129 x 129 grid.

\_

FIG. 7. Vorticity contours for flow in driven cavityh = 400.
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FIG. 8. Steady-state results farcomponent of velocity along the vertical line through the geometric cente
of the cavity.

To demonstrate the agreement between the current results and the multigrid results,
culated values for the-component of velocity along the vertical line through the geometrit
center of the cavity are shown in Fig. 8. Five sets of numerical results are shown in
figure. The results generated using the Dirichlet and Neumann vorticity formulations o
41 x 41 grid are visually indistinguishable from the results generated by the multigrid fini
difference method on a 129 129 grid. The convergence of the Dirichlet vorticity forma-
tion can be seen qualitatively by viewing the 221 grid and 41x 41 grid results. Finer
discretizations for the vorticity formulations produce results which are indistinguishak
from the 41x 41 grid results. Finally, results generated by a primitive-variables FEM coc
using 400 bi-quadratic 9-node quadrilateral elements is also shown. The primitive-varie
FEM code contained the identical set of nodes as the 41 vorticity FEM grids. It is
interesting to note that the 24 21 vorticity FEM results, which contains approximately 1/4
of the grid points compared to the primitive-variable FEM grid and uses bilinear compar
to biquadratic elements, provided more accurate results than the primitive-variable F
code.

To further show the accuracy of the current approach for solving the vorticity equatic
guantitative comparisons are made with the multigrid results for the location and exten
primary and corner vortices in Table I. The following comparisons are made between
current Dirichlet FEM vorticity solutions using a 4441 uniform grid and the multigrid
finite difference solutions of Ghiat al. [8] on a 129x 129 grid. As seen in Table I, the
comparison between the FEM and FDM results is excellent. It is particularly notewort
that the solutions using the vorticity formulation are able to provide an excellent resoluti
of the two bottom secondary vortices on a relatively coarse grid.

The vortex sheet formulation of the GHD yields a Fredholm integral equation of t
second kind while the boundary vorticity formulation yields a Fredholm integral equatic
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TABLE |
Comparison of Primary and Secondary Vortex Data between
Dirichlet FEM Vorticity Solution and Primitive Variable FDM So-
lution of Ghia et al.[8]

Dirichlet FEM Results  Multigrid FDM Results

(x,y) coordinates (0.5535,0.6066) (0.5547,0.6055)
of primary vortex

Length of bottom left 0.1098 0.1081
vortex on lower wall

Height of bottom left 0.1312 0.1273
vortex along side wall

Length of bottom right 0.2676 0.2617
vortex on lower wall

Height of bottom right 0.3272 0.3203

vortex along side wall

of the first kind. As discussed above, an LU decomposition is performed outside the ti
loop. For the 41x 41 grid, the condition number for the vortex sheet formulation wa
6.68, whereas the condition number for the boundary vorticity formulation was 13.68. B
condition numbers are small for a system of 164 linear equations. The reason that the
kind of formulation yields a small condition number (on the same order as the second k
of formulation) is because of the singular nature of the Green’s function in the dom:
integral which results in large diagonal matrix elements.

The results of Ghia, Ghia, and Shen and the primitive-variable FEM results are stee
state solutions. The vorticity FEM results are run through the transient starting with
impulsively started upper lid. A comparison of the Neumann vorticity FEM and the Dirichl
vorticity FEM is performed for the transient solution. Tireomponent of velocity is shown
in Fig. 9 at the poink = 0.5, y = 0.9 (the origin is located at the lower left-hand corner
of the cavity). Although there are some differences between the two methods in the e
transient, at the field poink(= 0.5, y = 0.9), the largest discrepancy in thecomponent
of velocity at the field point after the first second is 0.0041%, the largest discrepancy
the v-component of velocity is 0.0013%, and the largest discrepancy in the vorticity
0.0085%. Further, for more realistic situations in which the initial and boundary data :
not discontinuous, this level of agreement between the two methods could be expected
in the very early transient.

Finally as discussed in Section 3.2, the accuracy of the numerical quadratures use
the discretized Galerkin GHD can be assessed by taking column sums of the assoc
linear system of equations. Analytic values for the column sums can be determined
the Dirichlet problem from Eq. (31) and for the Neumann problem from Eq. (29). F
the Dirichlet problem on the uniform 2& 21 grid, the analytic column sum is given by
/800 for finite element nodal basis functions associated with corner nodes/4d@ for
finite element nodal basis functions associated with edge nodes. The calculated col
sums for finite element nodal basis functions associated with corner nodes agreed t
significant figures. The result to six significant figures is given by 3.92732E-3, which sho
a relative error of 8.4599E-5 compared to the analytic value. The calculated column st
for nodal basis functions associated with edge nodes agreed to six significant figures g
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FIG.9. Transientresults for the-component of velocity at the poirt= 0.5, y = 0.9. The inset is a blow-up
of the plot for early times.

by 7.85397E-3, which shows a relative error of 1.2528E-6. For the Neumann problem on
uniform 21x 21 grid, the analytic column sum is given by20 for all boundary element
nodal basis functions associated with corner nodesrédih@ for all other boundary element
nodal basis functions. The calculated column sums for the boundary element nodal b
functions associated with corner nodes agreed to 14 significant figures. The result tc
significant figures is given by 0.157182, which shows a relative error of 6.5165E-4 w
the analytic value. The calculated column sums for all other boundary element nodal b
functions agreed to 11 significant figures. This result to six significant figures is giv
by 0.314159, which shows a relative error of 2.7827E-8. These calculated column st
demonstrate the accuracy with which both the domain and boundary integrals are perfor
in the Galerkin GHD.

5. CONCLUSIONS

Two approaches for determining boundary conditions appropriate for the vorticity for
of the Navier—Stokes equations are presented in this research. Both approaches are |
on a Galerkin implementation for the generalized Helmholtz decomposition (GHD). The
are several advantages both numerically and conceptually in using a Galerkin formula
as opposed to the more traditional point-collocation formulations.

The accuracy of the Galerkin formulation is shown to be far more accurate than the po
collocation formulation. Many researchers in the past have added constraint equations v
attempting to implement the GHD to solve for vortex sheet strengths. It is possible the
constraint such as imposing Stokes theorem was necessary for point-collocation mett
in order that excess vorticity not accumulate within the domain over time because of poc



GALERKIN IMPLEMENTATION OF THE GHD 235

approximated vorticity creation on the boundary. No constraint equations are implemer
in the current formulation.

There has been considerable debate in the literature concerning which component ¢
GHD should be imposed in order to satisfy the velocity boundary conditions. The concept
advantage of the Galerkin formulation is that it can be proven that the normal compon
leads to a rank-deficient set of linear equations. Further, the tangential component leax
an integral constraint that is implicitly satisfied by the GHD. This constraint equation c
be related to column sums associated with the linear equations which can be used to te
accuracy of the integral evaluations of the GHD. Although the tangential component of
GHD is used by necessity to determine either boundary vorticity or vortex sheet streng
the level of accuracy in satisfying the velocity boundary conditions in the tangential a
normal directions is of the same order of magnitude.

There is extra computational expense in implementing the Galerkin formulation of t
GHD compared to the point-collocation formulation. However, this computational exper
is performed only once outside the time loop. Further, it is quite likely that the Galerk
formulation would actually be less expensive for a comparable level of accuracy.

There has also been some debate in the literature whether it was more appropria
determine boundary vorticity yielding Dirichlet boundary conditions or determine vorte
sheet strengths yielding Neumann boundary conditions. A direct comparison is perforr
in this research (perhaps for the first time) showing that the two approaches are essen
equivalent yielding numerical results that are typically only a fraction of a percent ape
Solving for boundary vorticity results in a Fredholm integral equation of the first kin
whereas solving for vortex sheet strengths results in a Fredholm integral equation of
second kind. Typically, Fredholm integral equations of the second kind result in mc
stable numerical methods characterized by well-conditioned discretized linear syste
However, in the case of the GHD because of the singular nature of the domain integre
both approaches yield very well conditioned discretized linear equations.

A Galerkin finite element method is implemented to solve the vorticity equation usil
the GHD to provide appropriate boundary conditions as discussed above. The vorti
equation is linearized again using the GHD to determine the interior velocities. The dri\
cavity problem at a Reynolds number of 400 is considered as a benchmark. Both vorti
formulations (Neumann and Dirichlet) are shown to provide more accurate results tl
a primitive variable formulation for the same level of discretization. In fact, the vorticit
formulations using 1681 grid points compared very favorably to a multigrid finite differen
method using 16,641 grid points.
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